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Abstract. The torque acting on an axisymmetric solid body which rotates about an axis perpendicular to its axis of
symmetry is determined by a method which relaxes one of the three boundary conditions on the body. The method
leads to an axisymmetric boundary value problem whose solution uniquely determines the torque. Illustrations
including the prolate and oblate ellipsoid and limiting results relating to the sphere and thin circular disk provide
corroboration with known results.

1. Introduction

A problem of fundamental importance in many engineering applications of the theory of

suspensions in sedimentation or aerosols is the determination of the Stokes resistance of a

small particle in motion in a fluid which is in general undergoing shear. An example would

be the transport of solid particles in a pressure driven flow through a tube or channel. The

theoretical problems which model these applications are naturally problems of great

mathematical complexity involving in general particle-particle and particle-wall interactions

as well as the basic particle-fluid interaction. The most fundamental of these problems is the

latter.
If an isolated body rotates in unbounded fluid at rest at infinity and the Reynolds Number

for the flow is sufficiently small for the Stokes equations of motion to apply, then the body
experiences a torque which is equal and opposite to that acting on any other enveloping

surface, as demonstrated in Appendix I. By choosing the enveloping surface to be a large

sphere with centre at the origin, it is clear that the torque on the body arises from the rotlet

singularity term in the far field asymptotic expansion of the velocity. The rotlet singularity
represents the continuous application of torque applied at a point interior to the body and

situated along its axis of rotation. For an axisymmetric body with fore-aft symmetry about a

plane through its centre perpendicular to the axis of symmetry, this point of application of

the rotlet singularity would be its centre. The velocity field for a rotlet is O(r-2 ) as r--> x,

with r measuring distance from the origin, and terms O(r - n ) for n - 3 in the asymptotic
expansion of the velocity cannot contribute to the resultant torque acting on the body.

For rotation about the axis of symmetry, the problem was investigated by Jeffery [1] who

showed that the pressure field is constant and the fluid velocity consists of one component
orthogonal to the azimuthal plane. The solution for this velocity component was found
explicitly for a number of body geometries. Chwang and Wu [2] approached this problem
from a different viewpoint and showed how exact solutions for rotating bodies can be

constructed by considering suitably chosen distributions of rotlets along the axis of

symmetry. Their work corroborates that of Jeffery for the torque coefficient for prolate or

oblate ellipsoids. When the body rotates about an axis which is not the axis of symmetry,



366 K.B. Ranger and M.E. O'Neill

there is a scarcity of exact solutions. Slender body theory, applicable when the axial
dimension of the body greatly exceeds any transverse dimension, provides approximate
solutions for such bodies, as is demonstrated by Batchelor [3] and Cox [4] for example. An
exact solution was determined by Edwardes [5] for slow rotation of a general ellipsoid about
a principal axis. The torque on an ellipsoid of revolution rotating about its axis of symmetry
is found to agree with that of Jeffery if a numerical factor, incorrectly calculated as 32/5, is
replaced by the correct value 16/3. Brenner [6] examined the limiting case of a circular disk
and pointed out that the torque is invariant about any axis of rotation through the centre of
the disk. This remarkable property is of course also possessed by the sphere. It is further
shown by Brenner to be a property possessed by some other bodies such as a cube. It is
worth noting that no similar drag invariance property exists for the translating disk. Jeffery
[7] obtained an exact solution for a general ellipsoid in a linear shear flow and properties of
this solution have been extensively studied by Hinch and Leal [8].

The asymmetric rotation problem is evidently more complicated analytically because in
addition to a non-vanishing pressure field there are three velocity components which must
now be determined. As demonstrated for instance by Lamb [12] and further elaborated in
Appendix II, the general solution of the Stokes equations involves the evaluation of three
quasi-harmonic scalar functions which through their coupling cannot be determined sequen-
tially. As stated earlier, the torque acting on the body depends only on the strength of the
rotlet singularity in the asymptotic expansion of the velocity field at large distances from the
body. The purpose of this paper is to demonstrate that the determination of this rotlet
strength does not however, require the determination of the complete flow field. We show
that by relaxing one of the three boundary conditions on the body, the rotlet strength, and
therefore the torque acting on the body, is uniquely specified on solving a tractable boundary
value problem for an axisymmetric biharmonic function. The complete flow field would be
the addition of this 'relaxed' flow field to a complementary flow field whose rate of decay at
infinity is O(r- 3 ) and consequently cannot contribute to the torque. The analysis is presented
in a general form appropriate to a wide class of axisymmetric bodies. Illustrative examples
are the prolate and oblate ellipsoids where the torques are shown to agree with Edwardes if
the numerical factor in his work is corrected. The limiting configuration of sphere and
circular disk are also considered and our results corroborate those of Brenner. The analysis
may also be applied directly to the case when the body is at rest in a fluid which, in the
absence of the body, is in rigid body rotation. Clearly the torque acting on a body at rest is
equal and opposite to that acting on a body rotating in fluid at rest.

2. The equations and method of solution

The fluid motion to be considered is the three-dimensional Stokes or creeping flow of
unbounded fluid in the presence of an axisymmetric solid of revolution for which the z-axis is
the axis of symmetry. It is also supposed the meridian boundary curve of the solid is F and is
symmetric about the plane z = 0. The flow is forced by the rotation of the body about the
y-axis in fluid at rest at infinity. Consequently the boundary value problem for the fluid
velocity q and pressure p may be stated in non-dimensional form as follows:

0 = -grad p + V2q , div q = 0, (1)

q=[j xr] onF. (2)q --> as -->- 
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In fact the asymptotic expansion of the fluid velocity for large r can be developed following
Happel and Brenner (9). We find that as r 0,

[j 'xr] 3mxzrq- k GX r+ 3m zr + O(r-3 ), (3)
r

6mxz
p r - +O(r-5) , (4)

where k and m are constants. The first and second terms on the right-hand side of (3) are,
respectively, the velocity due to the rotlet and stresslet singularities. The rotlet has at most a
constant pressure field. Since the torque acting on the body may be determined directly from
the torque acting on a large sphere, it is easy to show that the contribution from the stresslet
is zero while the contribution from the rotlet is 8rr/kj, with the coefficient of viscosity. On
letting r c, all other terms in the expansions of q and p give zero contribution. Thus, the
torque acting on the body is

G = -8irpkj .

If x = p cos 4, y =p sin 4, z = z define cylindrical polar coordinates, the boundary
condition (2), the asymptotic conditions (3) and (4), together with equations (1) imply that
the dependence of q and p on the azimuthal angle must be of the form

q = qz(p, z)k cos + q(fj, z)A cos + q,(p, z)d sin X, (5)

p = I(p, z) cos . (6)

It is therefore only necessary to consider a solution of (1) for the first order Fourier
component in and a solution of this form, involving three independent scalar functions, is
shown in Appendix II to be

q = curl(C cos b) + grad( cos )) + curl(A k sin &) ,(7)

where A, B, C are solutions of

2 2 1 

L_(A) = L_1 (B) = L_,(C) = 0, L +p (8)
- O

2
Op

2+2 p p

It therefore follows

ac C 1 aB aC 1 aB (A-B)
q, p p p z ' - z pp p

1 OA (A - B)
q = p + p 2 (9)P .9p p

and the pressure is given by

2 C
P= -p z cos 4 .p z
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Now if A, B, C are given by the particular solutions

kz kz mp2
A=- B=-r--, C , (10)r r r

with k and m constants, then the corresponding form of q is given by

3mxzr k[j x r]
q 5 + 3 (11)r r

Conversely since

q1 = curl(C4 cos f), q2 = grad cos ), q3 = curl k sin (12)

are linearly independent solutions of the Stokes equations, it follows that if q is represented
by equation (11) then the most general forms of A, B, C are represented by equations (10).

Returning to the general velocity field, we define an axisymmetric harmonic function D by
the Stokes-Beltrami equations

1 B a 1 aB aD 2 1 2
__ =- --- = -d L'(D) 2 + p + +d2 D=O, (13)p ~z ap' pap az' L I p = 0

and it is also expedient to set C=pE/lap where E is also an axisymmetric harmonic
satisfying L 1 (E) = 0. It is noted that in the particular case when C = mp2 /r 3 , then E = -m/r.
Writing X = C + D + E, the velocity components can be expressed as

ax ax aE (A - B) 1 aA (A - B)
q - p p' q, =- - + 2 - +2 (14)az az p P p

The function X is a solution of the repeated operator equation L 2(X) = 0 and is consequently
an axisymmetric biharmonic. The solution can be represented by the decomposition formula
[10]

X = U 1) + V(-1) , Ll(( )) = 0, L_(v (- l )) = 0 . (15)

It is further observed that both aE/za and p-' A/lap are axisymmetric harmonics. By
writing

OE 1 A
q, =-Tz+ -p '(16)az p ap'

then L1(t) = 0 and we see that equations (14) imply that

ax ax (17)

On the boundary of the body, equations (17) give

axz -2z
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It is therefore necessary to find axisymmetric functions qi and X such that

L 1 i, = L =0, (19)

which satisfy equations (18) on the body and the asymptotic conditions

(m + k)z , (20)
3 

(k - m) Mnp ( (21)
X ~ + + (21)r r

as r--. In general, this boundary value problem determines the constants k and m, and
therefore the torque acting on the body. It will be noticed that the velocity and pressure
fields q(r) and p(r) resulting from this solution do not in general satisfy the third non-slip
condition involving q + q,. The true velocity and pressure fields q(t) and p(t') are evidently
given by

q(t =q(r) + q(c)

p(t) =p(r) + p(C)

where the complementary fields q(C) and p(C) ensure the satisfaction of all three boundary
conditions. Since q(r) and p(r) determine correctly the rotlet and stresslet strengths in the far
field, the fields q(C) and p(C) give no contribution to the torque acting on the body.

It is assumed that the equation of the body is expressible by the conformal mapping

z + ip =f(a + ip) ,

with f'(a + i/3) 0 in the flow region and a = ao = constant defines the meridian curve F.
The function X which satisfies L2X = 0 is represented by the decomposition formula

x = u ) + v-1). (22)

The axisymmetric harmonic u(1) and the axisymmetric stream function v(-1) satisfy the
equations in a, /3 coordinates given by

a (P u) a (P u( ° (23)a -a 0,

Pa 1 aV ap )= (24)Oo p '8 p a' /=0'

The inner and outer boundary conditions are given by

ax az ap
ax = (, - 2z) a - P aa
ax az ap (25)

0= - 2z) -. -pap ap .

on F and
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(m + k)z (1

3 + 0( ,

X r + 2 + 0) J

as r-* . Although the torque is independent of m, it is necessary to retain m in the general
formulation of the boundary value problem in order to determine k uniquely. In the next
sections we give some examples of the application of the general theory.

3. The sphere

In spherical polar coordinates (r, 0) the appropriate forms for u(') and v(1 ) are given by

(k - m) F(3 cos 20 - 1) = msin2 0
r + r3 (27)

implying

(k - mrn) rn sin 20 F(3 cos20 - 1)
X =- ( + + 3 (28)r r r

where m, k, F are constants. The boundary conditions are

X aX
r (m - k - 1) COS20 - 1 (1 - m - k) sin 0 cos , (29)

at r = 1 and

(k-m) m sin20
X (k + sin asr- oo. (30)

A r r

It is a routine procedure to show that F = rn = 0, and k = 1, producing the known correct
expression G = -8r/,L for the torque.

4. The oblate ellipsoid

Oblate ellipsoidal coordinates are defined by

z + ip = sinh(a + i/3), (31)

or equivalently

z = st, p = ( 2 + 1)1/2(1 t2) 1 / 2 (32)

where s = sinh a and t = cos ,. The surface a = a0 or s =s o corresponds to the oblate
ellipsoid whose equation is

( ) + (cosh a) 2 = 1. (33)



Torque and axisymmetric body 371

With X = u() + v(-1), the functions u( 1) and ( - ) satisfy

a [(2 a"-a 1 r au(1)]

ds [( 1) ds ] adt [(1 t-) at 0, (34)

2(-1) 0 2a(-1) 

(s2 + 1) + (1- t 2 ) =. (35)

Suitable functional forms for u (l ) and v(- I) are

u ( ) = (k - m)qo(s) + 2Fq2 (s)P2(t), (36)

v - 1) = 3mql(s)(s 2 + 1)(1 - t2 ), (37)

where F is a constant and q n() = n+lQn(is), with the prime denoting differentiation with

respect to s. From Morse and Feshbach [11],

qo(s) = tan-l(1/s) , q1(s) = 1 - s tan-'(l/s) 

q2 (s) = [(3s2 + 1) tan-(1/s) - 3s], P2 (t) = 1(3t2 - 1 (38)

Thus

X = (k - m)qo(s) - mq (s)(s2 + 1)(1 - t2) + 2Fq2(s)P 2(t), (39)

and since Lq1 = 0, a suitable form for 6i is

P = 3(k + m)ql(s)t . (40)

Furthermore, as s and r---> 

qo(S)-s-'-r - ' 3q (s) - s-2 - r- 2 , q2(s) - s-3 - r- 3 .

It is therefore clear that the choice of X and ¢ satisfy the asymptotic conditions in the far
field as r---> oo. There remains the two boundary conditions on the body to be satisfied. These
require

aX = 3(k + m)ql(s)t 2 - so(t2 + 1), (41)
ax 

at 3(k + m)ql(So)sot + t(l - s 2)

when s =so. With X given by (39), these equations give rise to three equations for the
constants m, k and F, namely

qO(s)k - [3q1 (so) + qO(S)]m - q(s 0)F + s o= 0, (42)

3q[(so)k - 3q (sO)F - s o = 0, (43)

3soqo(so)k - 3[soql(s) -(s o + 1)q(so)]m - 6q2(sO)F + 1 - s = 0, (44)

and since
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3q,(so) + q;(so) = -q(s 0 ), soql(so) - (s 2 + l)q[(sO) = tan-(1l/s0 ),

equations (42), (43) and (44) simplify to

k-m+4f=0,
k - F = s/3q(so) ,(45)

m + TF = -1/3 tan-(1/so),

with oa = q2(SO)/ql((s) and T = (soq (So) - 2q2 (so))/tan-l(1/so). The coefficient k is readily
found to be

k = 2(2s2 + 1)[(1 - s0)2 tan-'(1/so) + so]-' , (46)

and hence the torque acting on an oblate ellipsoid rotating with unit angular velocity about
the minor principal axis coincident with the y-axis is

G = - ¢36 raJC(2s + 1)[(1 - s 2) tan-(l/so) + S]- . (47)

Edwardes' expression for the torque is expressed in terms of elliptic integrals which may
be written in terms of simple functions when the ellipsoid has rotational symmetry. For such
bodies, Edwardes' formula for the torque agrees with (47) when an incorrect constant factor
of 32/5 is replaced by 16/3. The limiting case so--> 0 corresponds to a circular disk of radius
unity. Equation (47) then yields G = -324A/3 which agrees with the result reported by
Brenner (1963) and available in Happel and Brenner [9]. The case so > 1 corresponds to a
large sphere of radius s. Equation (47) then yields G = -8r/usoJ, which is the well known
Kirchhoff formula.

If the oblate ellipsoid rotates with angular velocity Clj and the minor semi-axis length is a,
the torque acting on the body is then G = -8rnfka3 jI(so + 1)3/2.

The values of the other solutions of equations (45) are

m -= [(So - 1) tan- (1/So) - So]-' , (48)

F = 3(S 1)[(sO_ 1) tan l(1/s) - so] . (49)

The constant m gives the strength of the stresslet singularity at infinity when the oblate
ellipsoid rotates about the y-axis.

5. The prolate ellipsoid

In a similar way the conformal transformation for a prolate ellipsoid is defined by

z + ip = cosh(a + ip) , (50)

or equivalently

z = cosh a cos f , p = sinh a sin . (51)

The surface a = ao, corresponds to the prolate ellipsoid expressed by the equation
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P) ) = 1. (52)

Again the function X can be written as X = u(1) + v (-1 ), where u(') and v(-1 ) satisfy the
equations

a [(2 0u(X) 0 t2) a(U (1 )

as as at1) ] + [(1 ) ] =0 (53)

20(- a) 1)

(s2 _ 1) 2 + (1 - t 2 ) 2 (- 1) = 0, (54)

with s = cosh a, t = cos 3. Suitable forms for u(1) and v( - ) are given by

u (1) = (k - m)Qo(s) + 2FQ2 (s)P2(t), (55)

(-1)= -3mQ(s)( - 1)(1-t2), (56)

where F is a constant. Solutions for X and ¢4 are therefore

X = (k - m)Q(s ) - 3Q'l(s)(2 - 1)(1 - t2 ) + 2FQ2(s)P 2(t), (57)

I = 3(k + m)Q(s)t, (58)

to satisfy the asymptotic conditions as r and s -- 0, the Legendre functions being defined by

QO(s) = 2 l10g[(s + )/(s - 1)], Q(s) = 2s log[(s + )/(s - 1)] - 1,

Q2() = (3s 2 _ 1) log[(s + )/(s - 1)] - , P2(t) = (3t 2 - 1),

and it being noted that

Qo(s)-s- - r - 1 , 3QI(s)S-2 r- 2 , 2 Q2(s) -3 r - 3

as s and r oo. To satisfy the boundary conditions on the body require

aX = 3(k + m)QI(sO)t2 - s(t 2 + 1) ,}

ax
at = 3(k + m)Ql(sO)Sot - t(s 2 + 1)

on s = so = cosh a0 . As for the oblate ellipsoid, equations (59) lead to three equations of
simple form for the constants k, m and F. These equations are

k- m - 4F =0,
k - or2F = So/3Qj(so), (60)
m + T2 F = 2/3 log[(so + 1)/(s0 - 1)]1

The solution for k, the strength of the rotlet singularity in the far field asymptotic expansion
of the velocity field, is
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k = (2s - 1)[4(s0 + 1)log[(s0 + 1)/(so - 1)] - s0]- , (61)

and hence the torque acting on a prolate ellipsoid rotating with unit angular velocity about
the y-axis is accordingly

G = - (2s 2 -1)[(s2 + 1) log[(s 0 + 1)/(so -1)] -s 0l - . (62)

Again this result may be recovered from Edwardes's general formula when the ellipsoid is
prolate. The limiting case s > 1, as for the oblate ellipsoid, corresponds to a large sphere of
radius s with centre at the origin. Equation (62) then gives G = -87rpsj.

If the prolate ellipsoid rotates with angular velocity f1j and the length of the minor
semi-axis is a, the torque acting on the body is then G = -8rlAfka3 j(s 2

- 1)3/2.

The values of the two other constants m and F are found to be

m = 2 [ ( + 1) log[(s 0 + l)/(s0 - 1)] - s 0] - , (63)

F = (s2 - 1)[2(s 0 + 1) log[(s0 + 1)/(so - 1)]- sl- . (64)

The constant m gives the strength of the stresslet singularity at infinity. The method
presented in this paper leads to simple calculations for the rotlet and stresslet strengths k and
m. Although k is directly related to the torque and hence is available from Edwardes's work,
to determine m from Edwardes's solution it would be necessary to develop the far field
asymptotic expansion of the solution appropriate for asymmetric rotation of an axisymmetric
ellipsoid and then identify the stresslet term in that expansion. As far as we know, the
constant m has not been determined before.

The general analysis presented in this paper is applicable to any axisymmetric body with
fore-aft symmetry which rotates about a principal axis orthogonal to its axis of symmetry. By
combining the torque calculated by our method for such flows with a calculation for the
torque for axisymmetric rotation, the torque acting on the body when it rotates about any
axis through its centre is then completely determined. Other body geometries for which the
analysis of this paper is relevant include those considered for axisymmetric flow by Payne
and Pell [13].

Appendix

Appendix I

The torque acting on a solid body bounded by a surface S for fluid motion exterior to the
body is

G= [rx R]dS, (A.1)

where R, is the stress vector associated with an element of S with normal n drawn out of the
body. If V is the volume of the region bounded by S and any surface I enclosing S, then

[r X Rn d - [r X Rn] dS = axi [r x Rj] dV, (A.2)
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since R = CRj, with R the stress vector for n coincident with ij, and n= i,~j. The
right-hand side of (A.2) yields

[jXRjidV + [rx ax dV.

But i x Rj = O and

aR
-Vp + V2 q = O .

axi

Thus

G = f [r x Rn] d.

The surface E may be taken to be a sphere, centre at origin and radius R arbitrarily large. It
is easy to show that the stresslet singularity gives rise to zero contribution to G identically
and by letting R--->, only the rotlet singularity gives a contribution to G.

Appendix II

It will now be verified that

I ( + ¢>) g (B AI) (p ¢) (B.1)q = curl(C4 cos 4) + grad(B cos ) + curl(/ k sin (B.1)

is a solution of the Stokes equations

Vp = V2q, div q = 0, (B.2)

where

a2 1 a 1 a2 a
V2_= + + -2 + 2

ap P ap p2 a2 a 2
Z

It is easily shown that

V2 cos ) - (Bcos , (B.3)

V2( sin ) = sin ¢, (B.4)

with

a2 m a a2
Lm -a + +a _

002 7P 2

Consequently
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q1 = grad( cos )+ curl sin k)(B.5)

satisfies

V2 q = 0, div q = (B.6)

if L_1 (A) = L_1 (B) = 0. The pressure generated by the velocity field q1 is therefore at most a
constant.

Considering now

q2 = curl(C4 cos 4), (B.7)

for which

curl q2 = grad( cos k) + V2 [C sin 2qi - C(1 + cos 2p)j] .

Using (B.3), it follows that

curl V2q2 = V2 curl q2 = 0 (B.8)

if and only if C satisfies simultaneously the equations

L_(C ) = 0, L2I(C) = 0, (L 1 - 4/p2)2C = O . (B.9)

From the Weinstein decomposition formula [10], a solution of L (C) = O is

C = v( ) + v (-1 ) , (B.10)

while a solution of (L1 - 4/p 2 )2C = 0 is

C = p2[0(1) + ( 3 ) ]

= p2W(1) + , ( - I) (B.11)

Thus the only choice of a function C to satisfy all three of equations (B.9) is

C = (-1) = (0(-l) . (B.12)

This establishes that q2 given by (B.7) satisfies (B.8). Thus

V2q2 =ivp

with p the pressure function, which can be verified to be of the form

2P= . ac cos . (B.13)
p z

By virtue of (B.6), p given by (B.13) represents the total pressure generated by the
complete velocity field given by (B.1). Since this solution contains three independent
functions A, B, C, it is a representation of the general solution of the Stokes equations
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appropriate for the variation in the azimuthal angle prescribed. It is equivalent to the
general solution given by Lamb [12].
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